
DEVELOPING A

CUSTOM TRADING APPLICATION

IN NEXTSTEP:

A CASE STUDY

Written by Gregory H. Anderson
President

Anderson Financial Systems Inc.
909 Sumneytown Pike, Suite 207

Springhouse, PA 19477
(215) 653 0911 voice
(215) 653 0711 fax

Email: greg@afs.com

Copyright 1993 by Anderson Financial Systems Inc.
All Rights Reserved

CONTENTS

Abstract 1

Statement of the Problem 2

The Solution 4
Development Environment 4
Class Overview 5
Object-Oriented Features Used 6

Project Life Cycle 11
Analysis and Design 11
Development 11
Deployment 13
Maintenance 14

Benefits 15
User Benefits 15
Programming Benefits 15

Conclusion 18

Appendix A: Description/Graph of afskit Classes 19

Appendix B: Description/Graph of tradekit Classes 24

1

ABSTRACT

The afs:TRADE Trading Management System is a custom application designed for the First
National Bank of Chicago to manage its commercial paper trading and underwriting operations. The
system provides on-line, real time access to all of the information needed by traders and salespeople
as they make decisions throughout the trading day. As the sole data entry point for all securities
transactions, it streamlines the flow of information between the front and back offices by printing
a copy of each ticket and transmitting trade information to the mainframe accounting system.

The afs:TRADE system runs in a client/server environment, with a Sun Sparc 2 database
server and NeXT workstation clients. The front end application was designed and implemented with
native NEXTSTEP tools in Objective C. Printing and communication daemons were written in
ANSI C, because they run on both Sun and NeXT hardware. The application has been running in
production since April 1992, and was recently upgraded to handle additional investment types. In
addition, AFS has implemented distinct versions of the system for three new customers over the
past year. High code reuse through subclassing and minimal maintenance requirements in those
projects have proved the value of an object-oriented approach in custom applications.

2

STATEMENT OF THE PROBLEM

First Chicago underwrites commercial paper (a form of short-term financing similar to a
credit line) for its best corporate clients. Trading proceeds at a brisk pace, because all activity must
be completed by noon. Inventory changes constantly as paper gets bought and sold, making it
difficult for the sales staff to stay informed of what is currently available. Due to the fast pace,
mistakes may occur as paper trade tickets pass through multiple areas before being recorded
electronically.

First Chicago evaluated Anderson Financial Systems’ existing DOS system (written in
compiled Microsoft BASIC) and decided that it was functionally complete for the task, but not in
accordance with the bank’s long term goals for operating environment, ease of use, ease of learning,
and program maintenance. As a result, First Chicago contracted AFS to rewrite the system in
Objective-C on NeXT workstations.

What benefits were expected?

• More activity without increased staff - This met an existing business goal to increase
the transaction volume of the department.

• More selling opportunities - Salespeople would have better customer information at
their fingertips, leading to more intelligent selling approaches and better customer
relationships. Also, since salespeople would spend less time on paperwork, they
would have more time for prospecting.

• Fewer data entry errors - Traders and salespeople previously hand-wrote buy and
sell orders, which were later keyed into the mainframe by data entry clerks. The new
system would provide a simple, interactive electronic form to enter orders, which
would then be transmitted directly to the mainframe.

• Fast development - AFS had never programmed a graphical user interface before. It
was expected that object-oriented encapsulation of the difficult details would lead
to more rapid prototyping and development.

What aspects demanded an object-oriented approach?

• AFS has written almost 50 custom trading systems over the past 10 years. All obey
the 80/20 rule: 80% of the code is shared among customers, 20% is different at each
site. Unsurprisingly, the last 20% requires 80% of the maintenance effort. Typical
customizing involves unique screen layouts and report formats, along with switches
to drive customer-specific behaviors.

3

• For this project, AFS created a set of classes which encapsulate standard financial
trading functions. These base classes are then subclassed for each customer’s
individual needs. This technique makes maintenance of both standard and customized
code far easier.

Why wouldn’t conventional approaches have solved the problem?

• Conventional approaches have been tried and found cumbersome over 10 years of
experience. They solve the essential application requirements, but have been difficult
and expensive to maintain. Bug fixes and upgrades, in particular, are difficult to
monitor and distribute in conventional software libraries.

• User involvement is another key requirement for successful implementation,
especially in the design phase. Otherwise, the design may undergo numerous
revisions before it is approved for implementation. The NeXT InterfaceBuilder tool
not only lets programmers sit down with users to create prototypes, it also allows
them to test the prototype without compiling and get immediate feedback under "real
life" circumstances. The benefit is that users gain a sense of ownership of the system,
because it is not simply imposed on them. This involvement would not have been
possible with a conventional technology.

4

THE SOLUTION

DEVELOPMENT ENVIRONMENT

The standard NEXTSTEP development tools were used for compiling and debugging
Objective-C and ANSI C source code. Most of these tools are based on the gnu ’gcc’ compiler and
the gnu ’gdb’ debugger. The 3.0 release of NEXTSTEP provides a ProjectBuilder tool and
integrated Edit (a NeXT-supplied structured text editor) facilities to manage the interactions between
these processes.

All user interface prototyping, design, development,
and maintenance was performed with the NeXT Interface-
Builder application, which allows the programmer to set the
launch-time attributes of objects and connections between
them. This information is archived into "nib" files, which
are loaded when the application launches. (Object archive
files are called "nibs" because that is their file extension.)

InterfaceBuilder is a highly extensible tool; it is not
restricted to managing only the objects in the NeXT-
supplied AppKit. During the project life cycle, AFS created
numerous custom objects and built Inspectors to set their
unique attributes inside InterfaceBuilder.

Since only two programmers are responsible for class maintenance, Unix access security is
sufficient for storage management and version control. Changes to class interfaces require the
approval of a specific manager. Once code has been certified and tested, changes must be marked
and signed clearly in the source code, and nothing may be physically removed. Most user-specific
changes are performed in subclasses for which only one programmer has responsibility.

Synopsis of tools and hardware:

Interface hardware - NeXT workstation
Interface software - NEXTSTEP

Core code hardware - NeXT workstation
Core code software - Objective-C and ANSI C

Database hardware - Sun Sparc 2
Database software - Faircom c-tree client/server

Development hardware - NeXT workstation
Development software - NEXTSTEP InterfaceBuilder application, AppKit classes

5

CLASS OVERVIEW

AFS expected to reuse this code for other customers. Therefore, the system was designed
in four tiers to differentiate between core functionality and customization. Experience with new
customers has shown that the lines between these tiers may slide, but that fact highlights a benefit
of the object-oriented approach: With good encapsulation practices, it does not take much effort or
retesting to move functionality between classes.

Here is a breakdown of the four functional tiers:

1) afsclib - The lowest tier is a library of ANSI C functions for database access,
financial calculations, and event handling. These are written in straight ANSI C
because they are needed in non-OO programs, such as daemons which run on the file
server and transmit information up the communications link. Most low-level
functions are wrapped inside afskit classes (see next paragraph) for application
development.

2) afskit - The second tier is a set of general-purpose extensions to the standard
NEXTSTEP AppKit classes. This includes a complete forms-based application
development framework, an access control mechanism for securing specific
functions and views (because different types of users have different access
privileges), and user-requested enhancements (such as keyboard-enabled
checkboxes). A hierarchical chart of the afskit classes and a list with brief
descriptions is attached at the end of this document. These classes are universally
reusable. AFS resells them to other NeXT developers as "ObjectWare" and uses
them in-house to build applications in other functional domains.

3) tradekit - The third tier is the core set of trading classes. These classes define the
80% of functionality that is shared by all customer sites, plus the most common
implementation of the remaining 20%. The implication of this design is that by
compiling and linking tradekit, a minimal "shrink-wrapped" trading system can be
produced. Only methods that differ from the most typical implementation must be
subclassed for individual customers. Although AFS usually performs the
customizing, any skilled programmer could use them to build customized trading
applications after a short training period. A hierarchical chart of the tradekit classes
and a list with brief descriptions is attached at the end of this document.

4) afstrade - The final tier is the finished work product: A custom application with a
unique user interface and subclasses of the tradekit classes as required. At this
writing, six variations exist at four customer sites. They are described in the
"Benefits" section, with details about how much subclassing has been performed at
each location.

6

OBJECT-ORIENTED FEATURES USED

Except at the very lowest levels, all functionality is delivered through objects. User interface
objects are typically created in InterfaceBuilder and archived into "nib" files. At launch time, the
nib objects are reloaded, reinstantiated, and reconnected. Non-UI objects, such as database entities,
are instantiated at runtime and connected to the appropriate UI.

The system makes extensive use of inheritance, polymorphism, and
messaging to perform its work. Virtual methods provide the basis for customizing.
If a customer needs to replace or enhance the system’s default behavior, a specific
method is subclassed. In some cases, the override calls back to its super class’s
implementation of the method; in other cases, it completely replaces the existing
implementation.

The most interesting way to describe the object-oriented features of the
system is to take a walk down the main menu. All of the important methods
(save:, edit:, find:, etc.) are polymorphic. The main menu is wired to send generic
messages to the first object that can respond to them. Members of the NeXT
Responder class keep a chain of objects that can respond to events, so events
show up automatically at the active window for processing. This design leads to
a shallow menu structure, because tasks need not be repeated in different contexts.
As a result, the main menu is easy to navigate and learn. Most menu operations
have an associated command key, which allows experienced users to trigger
specific actions with a single keystroke.

 Info Submenu

Help

To get on-line help for a specific object, the user simply clicks the mouse on it while
holding down the Control key. This action sends out a generic "Help!" message. The
Help Panel responds and asks the sending object some questions about itself (class,
title, owner, message sent when activated) to figure out the best kind of
context-sensitive help to provide. The programmer does not need to create specific
connections between individual objects and the help files, which reduces maintenance
requirements. Abstract implementation also allows users to extend the help system
at their convenience and guarantee the information will be found when it is needed.

Preferences

Users can set operational preferences, several of which are
mapped dynamically at runtime. For example, rather than
providing its own report rendering facility, the application
creates Rich Text Format (RTF) files and passes them to a

7

user-specified rendering program. All NEXTSTEP applications built with the
AppKit classes are guaranteed to respond to the message "openFile:". In just three
statements, the custom application opens a port, asks the global WorkspaceManager
to attach it to the specified rendering application (which will launch itself, if
necessary), then asks the rendering application to open the file that was just created.
Inter-application dispatch is so easy that it is never worth reinventing the wheel
inside a custom application, if the same task can be performed by an existing
application.

Forms Submenu

The Forms submenu provides access to the list of available forms, plus a set of
options for managing the information on those forms. All forms derive from the same base
class; therefore, they respond to the same messaging protocol. For example, here is the class
hierarchy for the trade-processing form:

Object - A NeXT-supplied root class, implements global object
behaviors.

Responder - A NeXT-supplied abstract base class for objects that
respond to events (keyboard, mouse, timer, etc.).

Window - A NeXT-supplied class with basic Window methods.

AfsWindow - An afskit class with first-level window extensions,
such as initialization, defaults management (preserve the window’s
size and position between runs), edit status, programmatic resizing
and placement, command key processing, and connecting the user
interface to database fields.

AfsForm - An afskit class which defines a protocol and standard implementation for
database entity management: new, delete, edit, save, revert, duplicate, fetch, find, find
previous, find next, set/clear locks. Also defines a delegation protocol (discussed
below) for important application states, such as formWillSave:, formWillDelete:,
formDidChangeEditMode:, etc.

TicketForm - A tradekit class which defines a protocol and standard implementation
for all methods required to manage the ticketing process. The TicketForm class also
redefines some of the AfsForm methods where special processing is required.

FNBCTicketForm - A custom subclass that implements many of the delegate methods
and overrides several TicketForm methods where site-specific processing is required.

8

In most cases, site-specific override methods supplement the standard methods,
rather than completely replacing them. In other cases, delegation is sufficient. Delegation
allows the custom parts of the system to participate in critical actions of an object without
writing a complete subclass. Delegates are especially useful for methods that are almost
always overridden, such as validating fields prior to saving. It is still necessary to write a
custom class, but often that custom class can implement delegate methods for all forms in
the system. At runtime, the system uses the method dispatcher to look up whether a delegate
exists, and if so, whether it can respond to a particular message, such as "formWillSave."
This design has the benefit of consolidating all validations into one object, which simplifies
code maintenance.

Persistent objects are implemented through a custom set of object wrappers. The
selected client/server database engine—Faircom’s c-tree product—is an ISAM server, not
an object-oriented database. To compensate for that limitation, at runtime the system
matches the names of the database fields (columns) and the user interface for the form that
will be presenting the data. These object pairs need not be connected programmatically,
which saves program code and makes it trivial to add fields as the system grows. Quite
literally, the programmer adds a field to the database, adds a correctly-named instance
variable to the form, and restarts the application. By the time data makes it to the form, it has
been recomposed into objects and attached to the correct fields.

Find submenu

The Find submenu implements the section of the AfsForm
protocol that relates to retrieving specific records. As on the Forms
submenu, these operations use polymorphism to send messages to the
first object that can respond, usually the active form’s Find Panel. Each
form has a custom Find Panel that allows the user to specify a query for
its class of managed objects. When the user asks to "search:" using a
specific query set, the Find Panel calls a custom Scan Panel to locate any
matching records and presents them in a browser for selection.

Scan Panels are flexible enough to look for outside data sources. In a system created
for another customer, the Scan Panel that looks for securities was extended to query a
third-party dial-up database. A special client/server process was created around the NeXT
Speaker/Listener classes (wrappers for ’rpc’ remote procedure calls) in less than a day. As
a result, users can query the external database just as easily, and in the same manner, as the
native database.

9

Edit submenu

The Edit submenu supports NeXT-supplied polymorphic behavior
for cutting, pasting, copying, and deleting text in the user interface controls.
These messages are sent to the "first responder," in this case the object
being edited.

Reports submenu

The reporting system provides an excellent example of dynamic class/method
generation through run-time loading and binding. Reports are among the most frequently
customized features, and new reports are often added to a certified system. The goal was to
integrate reporting into the application, but make it easy to modify without re-certifying the
mainline code. It was also expected that the customer’s programming staff might want to add
reports without AFS assistance, so the mechanism had to be easy to learn and use.

Each report is a custom subclass of a base class that knows how to open a report file,
generate an RTF document, and access the user-specified rendering program. All report
objects are stored in a special subdirectory whose contents can be altered freely. At runtime,
the application looks in the report directory and loads whatever it finds.

Each report consists of dynamically linkable object code with the specific output
formats, plus a "nib" file to capture any user-supplied data constraints (date range, specific
customer, etc.). A class method supplies the menu path to access the report. The application
uses this information to build the Report submenu hierarchy dynamically at runtime.

When the user walks down the menu path and picks a report, its data capture UI is
swapped into a resizable Report Definition Panel. This panel runs a modal dialogue to get
the required information, then generates the report. After report generation, the resulting file
is handed off to the user-specified rendering program (such as WordPerfect or Frame), which
displays the output and allows further manipulation of the contents. From the programmer’s
standpoint, a maximum of three methods needs to be overridden, and usually only one.

Services submenu

The Services submenu is maintained by the NeXT
WorkspaceManager application. In the "nib" file, this submenu is
empty. At runtime, the WorkspaceManager builds a list of all
applications that provide services to other applications. For example,
in any TextField, if the user highlights a word and presses ’Command’
plus the ’=’ key, the Webster Dictionary application will provide a
definition of the highlighted word. The custom application doesn’t need
to do anything to benefit from such inter-application services, except
provide an empty submenu to hold them.

10

Print...

Printing, faxing, and page layout panels are built right into the NeXT AppKit classes.
As with Services, custom applications simply need to provide menu options to access these
features. Total time spent providing sophisticated printing and faxing capabilities for the
custom application: 1 minute.

Utilities submenu

Access Control

Access control is a critical part of the application, because trading activity is
sent directly to the mainframe accounting system. Since users come and go, and
application functionality may change unexpectedly, access control is built into the
application in a way that never requires programmer maintenance.

Forms, Boxes, and Buttons can declare in InterfaceBuilder whether they want
access control, and if so, the default read/write/execute state to use. For example,
if a user does not have execute access to the Edit button on the Customer Form, he
will not be allowed to edit customer records. Rather than securing individual UI
objects, Boxes are used as securable containers, because experience has shown that
usually groups of things are protected. Many access control methods are implemented
as "categories," an object-oriented feature unique to Objective-C. Categories replace
methods in or add methods to a base class, without adding instance variables. This
eliminates the need to subclass every object that receives access control messages.

At runtime, the system queries all objects about their desired access control
state and takes the appropriate steps to protect them—in some cases, removing them
from the system. As new objects are created, they automatically get added to the list
of securable things, and they run in their default state until the security administrator
overrides them for specific users. To set access control states, the administrator
simply launches the application. It recognizes his or her special role and provides a
list of users and access privileges for editing. That’s all there is to it!

Lookup Tables

Lookup tables used to validate fields with restricted contents. At runtime,
when an AfsLookupField user interface object needs validation, the AfsLookupTable
class (subclassed from the NeXT Storage class) loads a user-maintained flat file and
performs the validation. The AfsLookupTable class also owns a simple window on
which the contents of a table can be edited. All of these features are added at runtime
if the application provides a menu option to support them. The custom application
does not have to perform any additional work to get the feature.

11

PROJECT LIFE CYCLE

ANALYSIS AND DESIGN

Anderson Financial Systems has 10 years of experience building trading systems, and a
similar system had already been implemented in Microsoft QuickBASIC under MS-DOS, so the
task analysis was almost complete at the start of the project. For similar reasons, the database
schema needed only a few modifications.

Program design, on the other hand, presented major challenges. This was AFS’s first project
using object-oriented techniques, and AFS had never used the NEXTSTEP operating system before.
Fortunately, one of the two programmers assigned to the project had prior experience in C++ on
Sun workstations, and the other programmer had designed the original BASIC system. The
combination of these two skill sets led to an initial plan in about a month.

The most difficult task at this stage was grasping all of the resources delivered with
NEXTSTEP. The main set of AppKit classes is not so much hard as it is big, and it took a while to
figure out the best approaches. The most difficult initial decision was whether to use separate
windows and controllers. Since the application is forms-based, it was decided to extend the Window
and Panel classes with enough intelligence to manage the information contained on them, then
subclass the base classes for specific entities. This design breaks the popular model-view-controller
paradigm, but it cuts in half the number of classes that need to be maintained. The concept of
delegation allows other objects to intercede with specialized behaviors as necessary, so this is a fair
compromise.

After initial versions of the data entry forms had been created in InterfaceBuilder with
standard NeXT user interface objects, the visual prototype was taken to the users for evaluation.
They agreed with the general model: A set of forms attached to a central application spine, each
managing its own entity (tickets, customers, etc.). Each form would own a Find Panel and a Scan
Panel specific to its entity, shareable with other forms to support database joins.

Total work time in design and analysis period: 2 man months. Elapsed time: 1 month.

DEVELOPMENT

With the user-approved interface in hand, development began. In order to minimize wasted
development effort, it was decided to implement one complete form and get user feedback. One
programmer wrote the core code for database access and the financial calculation library, because
these functions were well known and not subject to user modification. The other programmer
created an initial set of foundation subclasses on top of the standard NeXT AppKit objects, and then
the complete set of classes required for issuer management: IssuerForm, IssuerFindPanel, and
IssuerScanPanel classes. This sub-stage was completed in approximately four weeks.

12

It will not surprise any experienced reader that numerous problems were identified when this
prototype was shown to the users. Many of the objections concerned native NeXT object behavior.
For example, standard NeXT checkboxes and radio buttons can only be manipulated by mouse
clicks. Due to limited desk space, users stated that all mouse operations, including task invocation
from the main menu, had to provide keyboard alternatives. Also, to minimize accidental data entry
changes, users requested that editing be a modal process, with an intentional action to put a form
into an editable state. Back to the drawing board.

For the first time, the benefits of object-oriented programming became obvious. Even though
NeXT does not supply source code for its objects, AFS was able to override only three methods in
each of the checkbox and radio button classes to supply the desired keyboard behavior! Modal
editing was implemented in the AfsWindow subclass so that all forms would inherit the capability.

With user approval of the new implementation, several additional forms were coded to
demonstrate object interaction. Of particular interest was the way forms would share their Find and
Scan Panels. After several iterations, a general rule was adopted: If the
user typed a few characters in a text field whose value came from a joined
entity, that entity’s form would pass the field value to its Scan Panel, which
would "stand in" over the active form and provide validation services. If
the user clicked the text field’s label, the joined entity’s form would loan
its Find Panel to the active form. This architecture eliminates the need for
multiple instances of Find Panels.

Two months after the IssuerForm had been critiqued for the first
time, all major forms were complete. A four-workstation test environment
was established in the MIS department. Two traders and two salespeople
spent a day exercising the system in its entirety. New problems were
uncovered, but users expressed generally favorable impressions about the
quality of the application and the progress being made. Another month of
development addressed these problems and put the system in a state where
it could be deployed to the entire trading desk for functional testing. While
one programmer finished this work and created an initial set of reports, the other wrote a daemon
process to watch the real-time event stream and print purchase and sale tickets as they were
confirmed.

Total work time in development period: 8 man months. Elapsed time: 4 months.

13

DEPLOYMENT

While development was underway, the trading desks were physically reconstructed to hold
the large color workstation monitors, and users were given basic NEXTSTEP training. (AFS did not
perform these tasks.) Since the users know their business and had been involved in the design
process, they needed minimal training to start testing. Also, the custom application closely follows
NEXTSTEP interface guidelines. Having spent time learning other NeXT applications while the
custom application was in development, users had little trouble operating similar features.

The first parallel test was a disaster. A reasonable stress test had been performed with a few
workstations the previous week, but it had not uncovered several serious flaws in the low-level
interface to the database server. For the first time, users could review customer data that had been
downloaded from the mainframe accounting system, and it was universally agreed that the data
was in bad shape. (Since users had never seen or used this data directly, they had no reason or
ability to keep it up to date.) For example, many customers had the wrong salesperson assigned.
This caused insurmountable validation problems when salespeople tried to find and confirm their
own trades. Parallel testing was stopped for over a month while these issues were resolved.

A new round of parallel testing with complicated trades uncovered some processing
requirements that had gone unstated and unrecognized. Several of these new requirements led to
database schema changes, and again the benefits of object-oriented programming were apparent.
Never before had AFS modified core designs so extensively at such a late stage without re-certifying
the entire system. In this case, the benefits of object encapsulation allowed testing to consider the
only the affected classes and assume (correctly, as it turned out) that nothing else stopped working.
In some cases, changes were turned around overnight.

Parallel testing continued on and off for several months, because the acceptance plan
required a full week of clean processing, and the clock restarted after any problem was discovered.
(In retrospect, this requirement could have been relaxed, but this was the first in-house system to
completely replace the manual ticket-writing process.) Even though the system was not officially
"live" during this period, it was used on a daily basis and resynchronized weekly.

Most of the problems during the end of the deployment period were caused by the one
functional area that could not be completely encapsulated: database access. The low-level
client/server routines supplied by the vendor did not provide multiple contexts for each open file,
so the contents of each record buffer was public. Unanticipated interactions between objects
sometimes left the record buffers in a dirty state when the system was expecting them to stay clean.
In a way, even this deficiency shows the value of object-oriented programming, because the one
area that was not fully encapsulated proved the hardest to debug and caused the most lingering
problems.

Total work time in deployment period: 4 man months. Elapsed time: 5 months.

14

MAINTENANCE

At this writing, the system has been in production for over a year. It has been patched three
times to correct undiscovered bugs, and modified twice to support new specifications. For a
mission-critical system of its complexity, maintenance requirements have been minimal. User
satisfaction is high.

Maintenance has always been the most difficult part of the custom programming process,
because there was poor support for segregating core functionality from customized areas. Object
orientation solved this problem in an elegant way that is readily apparent in the subclasses, because
only custom behaviors appear there. AFS has also found it much easier to train new programmers.
With only 22,000 executable statements in the entire system, there’s not that much to learn. By
comparison, the original system contained almost 100,000 lines of code, much of which was
concerned with text-based user interface details.

All enhancement requests were held for the second version, which entered parallel testing
in late April 1993. This version adds support for several new instrument types and implements
many improved object classes.

15

BENEFITS

Many benefits have been stated throughout this discussion. Here is a recap of the highlights.

USER BENEFITS

• Easy to learn and use - Since users participated in the design, they already knew how
to operate the application by the time it was deployed. The NEXTSTEP operating
system provides an elegant and intuitive GUI, and AFS-supplied enhancements for
specific objects made it even friendlier.

• Increased business volume - On a recent day, total activity exceeded $1 billion, yet
all processing was finished by 11:00. The traders estimated that completing so many
orders under the old manual system would have taken at least two hours longer.
Also, the traders estimate that they can each manage twice as many issuers as before,
which provides plenty of room for growth without increased staff.

• Higher-quality information - The customer file on the mainframe accounting system
was cleaned up as a result of this project. In addition, salespeople can enter local
information of interest, such as a customer’s buying preferences. The system
automatically takes these preferences into account when it shows the salesperson
items which may be interesting to a specific customer.

• Fewer data entry errors - Traders and salespeople immediately notice the few errors
they introduce accidentally, because the incorrect information shows up on their
screens right away.

PROGRAMMING BENEFITS

• Rational, obvious organization of code functionality - It is much easier to train new
programmers to work on the object-oriented version of the afs:TRADE system. For
three programmers who joined AFS during the last year, the typical training period
was less than a month. In the past, the minimum training period was three months.

• Rapid prototyping, development, and deployment - In this project, total work time
was 13 man months, with an elapsed time of 10 months. Keep in mind this was
AFS’s first experience with NEXTSTEP, Objective-C, and the Faircom database
engine. With that experience in hand, it is estimated that a forms-based system in a
different functional domain (using afskit, but constructing the equivalent of tradekit
in the new area) could be built in less than four months.

16

• Minimal maintenance - fewer than 10 incidents in the first year.

• Dramatically fewer lines of code - 22,000 vs. almost 100,000, little of which is
concerned with user interface details.

• Painless refinement - With proper encapsulation, the line between standard and
custom functionality can shift frequently, with little or no code recertification.

• High code reuse - Since delivering the First Chicago system, AFS has implemented
five other systems for three new customers. By conventional standards, the results
are astonishing. Here are the total classes and maintainable statements in each of
these systems:

Mainline Code Reports

Classes Statements Classes Statements

Shared Classes and Libraries

afsclib - base functions 8 2,378 none
afskit - foundation classes 51 6,857 3 880
tradekit - trading classes 77 14,464 none
repotradekit - repo extensions 13 3,533 none

Average statements/shared class 182 293

Customized Systems

First Chicago money market 5 343 19 2,507
Citicorp money market 9 528 6 1,133
First Chicago repo trading 5 184 6 675
Citicorp repo trading 8 936 6 605
HSE municipal bond trading 12 1,656 under development
Soros portfolio management 10 1,405 under development

Average custom classes/system 8 842 9 1,230
Average statements/subclass 105 137

Now that’s reduced program maintenance! (By the way, "maintainable
statements" are defined as all lines in header files and code modules that begin with
’#’ or contain a ’;’.) When aggregating statement counts, it should be noted that each
customized system uses a subset (approximately 75%) of the afskit and tradekit
classes, which are grouped on this chart for convenience. Estimated total statements
for the First Chicago money market system:

17

Subdivision Statements % of total

afsclib (100% usage) 2,378 11%
afskit - (75%) 5,143 23%
afskit reporting (100%) 880 4%
tradekit - (75%) 10,848 49%
Custom subclasses, mainline 343 2% (!!!)
Custom subclasses, reports 2,507 11%

TOTAL 22,099

An impressive 87% of the total statements are shared with other customers’
implementations, and only 2% of the mainline code is unique. This is a significant
improvement over the conventional approach. It is hoped that the next version of the
system will include better reporting tools to reduce that section to less than 5%.

Of course, the user interface is different for each system, but these differences
are captured in the object archive files. Since UI attributes are set through direct
manipulation in the InterfaceBuilder application, and custom objects are just as easy
to manipulate as standard ones, creation and maintenance times are minimal.

The HSE and Soros systems are larger than the others because they are still
under development. For safety reasons, some tradekit methods are copied and fully
overridden in custom classes until the changes are tested and accepted. Based on past
experience, the size of these modules will decrease by 50% after such changes are
re-integrated into tradekit.

18

CONCLUSIONS

This project has convinced Anderson Financial Systems that object-oriented programming
represents the optimal solution for custom programming of mission critical applications. It provides
fast prototyping, rapid deployment, and stable finished products that are easy to use, learn, and
maintain. All new development work at AFS, even on platforms other than NEXTSTEP, is being
performed with object-oriented techniques. (A Windows/C++ port is underway.)

The programming truism "Be prepared to throw one away, because you will" proved
accurate, but the rebuilding of version two was far less painful and far more iterative than
conventional programming. For the most part, new classes were written to correct deficiencies—for
example, an entire set of self-verifying text fields was created for different data types—and
slipstreamed into the application. A better method for linking the database fields to the UI was
discovered, and it "just worked" across all deployed systems. Duplicate (copied) program code in
multiple classes has been pushed relentlessly up the inheritance tree, and such changes require only
minimal testing. These are tangible benefits that were not possible with conventional programming.

Anderson Financial Systems would advise any organization chartered with the development
of custom applications to take a hard look at object-oriented programming for future projects.
Especially with an experienced object-oriented programmer to serve as a mentor and guide the
design, the learning curve is not difficult to surmount with an open-minded staff—in AFS’s case,
less than six months. The benefits are dramatic, the pitfalls are minor, and the definition of what is
possible will never be the same.

19

APPENDIX A

A TECHNICAL OVERVIEW OF

THE afskit FOUNDATION CLASSES

FOR NeXTSTEP APPLICATION DEVELOPMENT

afskit is a collection of foundation classes for forms-based NeXTSTEP application
development. The objects in afskit provide an application framework with standard forms, find
panels, and scan panels for managing the entities in an application. These objects can create and
respond to real time events and keep users at all active workstations informed of changes and
activities which affect them. The afskit objects also validate user security, to ensure that the
application prevents unauthorized use of critical functions and presents itself in an appropriate
manner to each class of users.

APPLICATION FRAMEWORK

The following classes provide the application framework for forms-based applications. (The
parent class appears in parentheses after the subclass name.)

AfsApplication (Application) - Provides numerous default behaviors for program startup and
termination (database connection, printer/color panels, menu contents and alignment, window
defaults, etc.); user security (validate user login, validate user security profile and remove menu
items as needed, automatic logout times); user preferences management; real-time event
management; and real-time menu option management.

AfsEventManager (Object) - Acquires and dispatches real time events to all objects that have
registered for such services. Also transmits events to other machines when the local workstation is
the source of the activity.

AfsWindow (Window) - Provides a complete set of screen-to-database binding methods; user
preferences management; user security management; window/browser resizing and movement;
multiple-editing controls; and scrollable text field management.

AfsPanel (Panel) - Identical to AfsWindow, as a subclass of the NeXT Panel class.

AfsForm (AfsWindow) - Extended behaviors for AfsWindows which manage entities from
persistent databases. Implements a complete protocol for instance (record) management: new,
delete, edit, save, revert, set/fetch active, and find/scan. Provides "find:" and "validate:" services
to other AfsForms which use the entity it manages. With its inherited AfsWindow methods, the
AfsForm class is the heart of the system.

20

AfsFindPanel (AfsPanel) - Provides standard behaviors for Find Panels. Always subclassed for
specific entities, to provide the required query criteria. AfsForms (and the Main Menu) have a Find
button which attaches to these. Find Panels always dispatch selection criteria to a related Scan Panel,
which fetches the desired record(s) and displays a selection browser if necessary.

AfsScanPanel (AfsPanel) - Provides standard behaviors for Scan Panels, which fetch specific
entities and appear when needed to display and request a selection from among multiple matching
records. The standard "scan:" method takes the query criteria from the FindPanel and performs a
database scan. If there is no match, an AlertPanel is posted. If there is one match, it is returned
immediately. If there are multiple matches, they are displayed in a browser and the user is prompted
to select an item from the list.

AfsSwapPanel (Panel) - Provides a facility for NeXT-style inspectors, where the underlying Form
is constant and a PopUpList triggers a series of subviews for an AfsSwapView on the Form.

AfsReportPanel (AfsPanel) - Provides standard report option management and a complete set of
.rtf wrapping functions, standard header and footer methods, and dispatch to external text processing
programs (WordPerfect, WriteNow, etc.). For easy extensibility and user security validation, reports
are selected through a cascade of main menu options which trigger this panel. Individual reports
(subclasses of AfsReport) may provide an accessory view to acquire specific data which is needed
to create the report, such as date ranges.

SecurityManager (HashTable) - Security is an inherent part of many afskit objects, so security
management is provided as a direct function of the application. As a result, there is no need for a
separate program to manage the user and functional security profiles. This approach provides two
key benefits: reduced maintenance (because there is one less program and no distinct table to keep
up to date), and automatic inclusion of new functions in the security matrix when the application is
enhanced. As new objects are added to the application, all users inherit their default security profiles
until overridden by the security administrator.

The SecurityManager object provides two panels: an authorized user list (driven by Unix login), and
a protected object list. The protected object list works as follows: AfsWindows and their
descendents, AfsButtons, and AfsBoxes may indicate a desire for security and a default read/write
profile. (These attributes can be set in InterfaceBuilder or under program control.) For example, a
SalesOrderForm may desire security, and until overridden want to be in a read-only state. Within
the SalesOrderForm, the New button may desire security, and until overridden want to be invisible
(no read, no write).

When the security administrator runs the application, it enters a special mode where all objects are
queried about their desire for security and default security profile. Responsive objects are added to
the protected object list, after which specific users can be assigned a custom profile which overrides
some or all of the default states. When end users run the application, it determines their effective
privileges and removes any options to which they are not entitled.

21

INTERFACE OBJECTS

The application framework objects depend upon a set of smart user interface objects to get
much of their work done. All of these objects descend directly from the standard NeXT appkit
objects (in parentheses after the afskit class name) and can be pulled directly from a supplied palette
in InterfaceBuilder. At runtime, they call attention to themselves when they become the active
responder by drawing a ring around their bounding rectangle.

AfsTextField (TextField) - The standard NeXT text entry field, subclassed to provide better editing
support. When AfsTextFields are in a non-editable state, they set themselves to a muted white
halfway between pure white and light gray, and they pass through selectText: messages to their
nextText or previousText instead of bringing the editing loop to a halt. They also have an attached
label, similar to NeXT Form objects. This label is actually a ButtonCell which can send messages
to other objects for validation assistance. AfsTextFields can have an owner other than the window
on which they reside. The owner acts as a delegate, getting a chance to service help:, validate:,
readStorage:, and writeStorage: messages. Even without owner-specific behaviors, AfsTextFields
know how to read and write their values directly to database buffers.

The following subclasses of AfsTextField are provided for specific types of data entry fields:

AfsStringField - Performs initial-caps or all-caps transformations; limits data entry to a
specified number of characters for fields which are attached to databases with fixed-
length fields.

AfsLookupField - An alternative to pop-up lists. AfsLookupFields have a table of
acceptable values which is maintained through the AfsLookupTableEditor. (The Editor
can be included directly in the application, or provided through a separate application. The
table values are stored in a set of flat files which can be accessed by non-NeXT appli-
cations.) When the user enters data in an AfsLookupField, the entry is validated against the
table, and incorrect or ambiguous values are flagged. Alternatively, the user can click on the
field’s label, which brings up an AfsLookupPanel with all acceptable values (equiva-
lent to a pop-up list in a ScrollView). From there, a choice can be made and pasted back to
the field.

AfsNumberField - Performs minimum/maximum value checking. If the user clicks the
field’s label, a calculator pops up (AfsMouseCalcPanel) which can perform intermediate
calculations and paste the result back to the field. AfsNumberFields can be told what type
of database field they are attached to (char, short, long, float, double) and translate this data
automatically. The inspector also provides access to the floating point display format.

AfsDateField - Performs date format checking and displays in a variety of formats.

22

AfsTimeField - Performs time format checking and displays in a variety of formats.

AfsPriceField - A subclass of AfsNumberField that knows how to interpret and display
prices in a variety of financial trading formats.

AfsButton (Button) - The standard NeXT push-button object, extended to provide security for the
target/action method produced by the Button. See the description of security mechanisms (above)
for more details.

AfsCheckbox (Button) - The standard NeXT checkbox object, extended to support keyboard entry
and allow inclusion in the edit loop (the sequence when the user presses the Tab key). Addresses
complaints about the standard NeXT checkbox being mouse-only, which requires users to take their
hands off the keyboard momentarily.

AfsRadioButton (Matrix) - The standard NeXT radio buttons, extended to support keyboard entry
and allow inclusion in the edit loop.

AfsBox (Box) - The standard NeXT Box, extended to provide security for the objects it contains.
See the description of security mechanisms (above) for more details.

Graph3DButton/Graph3DView - A rubber-sheet 3D graph model that displays a time series of
data vectors and allows the user to reorient the viewing angle interactively. Controls for Cartesian
and polar viewpoint/objectpoint coordinates, y-axis and z-axis scaling, color vector for point-to-
point differences (deltas).

23

AfsSwapView

Object

AfsLookupTable AfsReportAfsEventManager

Responder

View

Box

Application

Control

Button

TextField

Matrix

Window

Panel

AfsReportPanel

AfsMouseCalcPanel

AfsLookupsPanel

AfsScanPanel

AfsFindPanel

AfsPanel

AfsWindow

AfsRadioButton

AfsCheckBox

AfsTextField

AfsLookupField

AfsNumberField

AfsDateField

AfsBox

AfsApplication

AfsTimeField

AfsPriceField

AfsStringField

Afskit Class Hierarchy

NeXT Classes

AFS Classes

SecurityManager

AfsSwapPanel

Graph3DView

Graph3DButton

24

APPENDIX B

A TECHNICAL OVERVIEW OF

THE tradekit CLASSES FOR NeXTSTEP

CUSTOM TRADING APPLICATION DEVELOPMENT

The tradekit is a set of base classes for front office trading operations. All classes descend
from the afskit objects, adding functionality as required. To clarify the inheritance tree, each tradekit
class is followed by its parent class in parentheses.

AfsTradeApp (AfsApplication) - Central coordinator for the entire application. Contains instance
variables for all forms, to facilitate communication between them.

Portfolios - Information concerning the user’s internal accounts.

PortfolioForm (AfsForm) - Detailed information about individual accounts; provides all
functions to add, delete, edit, and find them.

PortfolioScanPanel (AfsScanPanel) - Displays a list of all portfolios which match a user-
specified full or partial portfolio number; reports user’s selection back to the calling object.

Salesmen - Information concerning the user’s sales and trading personnel.

SalesmanForm (AfsForm) - Detailed information about individual salesmen and their team
members; provides all functions to add, delete, edit, and find them.

SalesmanScanPanel (AfsScanPanel) - Displays a list of all salesmen which match a user-
specified sales number; reports user’s selection back to the calling object.

Client Accounts - Information concerning customers and contra-parties.

AccountForm (AfsForm) - Detailed information about individual customers and contra-
parties; provides all functions to add, delete, edit, and find them.

AccountFindPanel (AfsFindPanel) - Assists in locating a specific account by allowing the
user to enter a full or partial account number or short name. Forwards these criteria to the
AccountScanPanel, which locates any matching record(s) and displays a list, if necessary.

25

AccountScanPanel (AfsScanPanel) - Displays a list of all accounts which meet
user-specified criteria; reports user’s selection back to the calling object.

AccountPositionsPanel (AfsPanel) - Displays a list of active positions owned by the
customer; when visible, synchronizes with the active customer on the AccountForm.

Delivery/Payment/Multiple Confirm Instructions - Information concerning both internal and
customer delivery/payment/confirm instructions.

DeliveryForm (AfsForm) - Detailed information about individual delivery instructions;
provides all functions to add, delete, edit, and find them. Instructions can be global to the
system, so the same set of instructions can be applied to more than one account.

PaymentForm (AfsForm) - Detailed information about individual payment instructions;
same functions as delivery instructions.

ConfirmsForm (AfsForm) - Detailed information about multiple confirm instructions; same
functions as delivery instructions.

InstructionsFindPanels (AfsFindPanel) - Assist in locating a specific set of instructions by
allowing the user to enter a full or partial code number, and select standard and/or
non-standard instructions. A slightly different version is provided for each of the instructions
windows. Forwards criteria to the associated InstructionsScanPanel, which locates any
matching record(s) and displays a list, if necessary.

InstructionsScanPanels (AfsScanPanel) - Display a list of all instructions which meet
user-specified criteria; reports user’s selection back to the calling object.

Security Descriptions - Information concerning specific securities.

CusipForm (AfsForm) - Detailed information about individual securities; provides all
functions to add, delete, edit, and find them. To minimize clutter while supporting numerous
security types, separate views (accessible through a pop-up button) are provided for different
types of securities.

CusipFindPanel (AfsFindPanel) - Assists in locating a specific security by allowing the user
to enter a full or partial CUSIP number, ticket symbol, state code, name, coupon range,
and/or maturity date range. Forwards these criteria to the CusipScanPanel or the Kenny
Information Systems server, which locates any matching record(s) and displays a list, if
necessary.

26

CusipScanPanel (AfsScanPanel) - Displays a list of all securities which meet user-specified
criteria; reports user’s selection back to the calling object.

KennySpeaker (Speaker) - Provides access to the Kenny Information Systems server, a
separate process (written by AFS) which runs at one published location on the network and
coordinates all dialups to the KIS database. Places telephone call, interprets returned
information, and signals caller upon completion.

CalculatorForm (AfsForm) - A free-form window on which calculations can be performed.
To minimize clutter while supporting numerous security types, separate views (selected
automatically according to available features) are displayed for different types of securities.
To minimize data entry, has direct access to the CusipFindPanel.

Issuer Descriptions - Information concerning issuers for whom securities are underwritten.
Intended primarily for money market systems, but also has applications in long-term fixed income
and equity underwriting.

IssuerForm (AfsForm) - Detailed information about individual issuers; provides all
functions to add, delete, edit, and find them. Includes criteria that validate ticket activity in
real time, such as maximum maturities and minimum block sizes.

IssuerFindPanel (AfsFindPanel) - Assists in locating a specific issuer by allowing the user
to enter a full or partial issuer number, symbol, or name. Forwards these criteria to the
IssuerScanPanel, which locates any matching record(s) and displays a list, if necessary.

IssuerScanPanel (AfsScanPanel) - Displays a list of all issuers which meet user-specified
criteria; reports user’s selection back to the calling object.

IssuerPositionsPanel (AfsPanel) - Displays a list of active positions outstanding for the
issuer, by maturity date; when visible, synchronizes with the active issuer on the IssuerForm.

Position Maintenance - Information concerning the user’s active positions.

OfferingForm (AfsForm) - Detailed information about positions owned for a specific
portfolio and issuer combination. Provides repricing functions for all positions (primary and
secondary); allows hand entry of proposed primary offerings. Automated end-of-day
closeout process (buy/sell order matching) for primary offerings. Direct access to
TicketScanPanel to locate outstanding trades against selected positions.

OfferingFindPanel (AfsFindPanel) - Assists in locating a specific set of positions by
allowing the user to enter a full or partial trading account and issuer short name. Forwards
these criteria to the OfferingScanPanel, which locates matching record(s) and displays a list.

27

OfferingScanPanel (AfsScanPanel) - Displays a list of all offerings which meet user-
specified criteria; reports user’s selection back to the calling object.

PositionForm (AfsForm) - Provides an editable view of any one position, unlike the
OfferingForm, which operates on sets of related primary underwriting positions.

PositionScanPanel (AfsScanPanel) - Allows the user to specify a set of filters to monitor
any subset of active positions in real time. Filters include security type, position type
(primary/secondary), portfolio, approved issuers, maturity range, coupon range, offered rate
range, and quality ratings range. Accepts customer preference templates from the
AccountForm to minimize repeated data entry.

PositionScanPanels display a list of all positions that initially match the selection criteria,
then continue to monitor purchases, sales, and repricing. The font switches to italics while
a position is subject to change. PositionScanPanels may be miniaturized; the mini-icon
"cracks" if a change comes in while the window is miniaturized. A separate audit trail log
is maintained within the window to review events which occurred while the window was
shrunk. Traders can trigger buy and sell tickets directly from PositionScanPanels. The total
number of active PositionScanPanels is unlimited, so salesmen can keep separate windows
for each outstanding customer inquiry throughout the trading day.

CollateralScanPanel (PositionScanPanel) - An expanded version of the PositionScanPanel
that monitors repo/resale collateral usage and recommends the order in which positions
should be used, based on trader-specified preferences.

Tickets - Information concerning transactions.

TicketForm (AfsForm) - Detailed information about individual tickets; provides all
functions to add, delete, edit, and find them. Usually subclassed for different types of
securities and to provide user-specific behavior and appearance.

RepoTicketForm (TicketForm) - An expanded TicketForm with a collateral browser which
knows how to manage repo/resale/borrow/pledge transactions. Also provides complete
maintenance of these deals, such as substitutions, rate changes on open repo, repricing, and
interest cleanup.

TicketFindPanel (AfsFindPanel) - Assists in locating a specific ticket by allowing the user
to enter a ticket number, trading account, customer, salesman, date range, and status
(confirmed/unconfirmed). Forwards these criteria to the AccountScanPanel, which locates
any matching record(s) and displays a list, if necessary.

28

TicketScanPanel (AfsScanPanel) - Displays a list of all tickets which meet user-specified
criteria; reports user’s selection back to the calling object. For salesmen, there is special
instance of this panel which displays a real time list of all of today’s confirmed and/or
unconfirmed tickets.

ProposedSellPanel (AfsPanel) - For salesmen, allows primary trades to be proposed to the
responsible trader without voice contact. If the trader accepts the order, a ticket is drawn up
automatically and returned to the salesman’s workstation. Otherwise a rejection notice is
displayed, and the salesman can follow up personally.

Rate Runs - Information concerning the user’s internally generated interest rate runs, current and
historical.

RateWindow (AfsWindow) - For individual security types, a window for traders to enter
the firm’s internally generated interest rate scales, and for salesman to monitor these tables
in real time. Multiple rate windows can be created, one for each security type. Each
RateWindow has a PeriodsPanel (Panel) which allows the user to determine which
maturities will be priced for a specific RateWindow.

CpRateForm (AfsForm) - A special RateWindow tied to a specific issuer and date. Allows
issuer-specific historical offering scales to be retained.

RateHistoryWindow (AfsWindow) - A composite monitor of multiple instrument classes,
current and historical; provides a real time side-by-side "snapshot" of multiple sectors. The
RateHistoryWindow has an attached SettingsPanel (Panel) which determines its organiza-
tion and behavior. The SettingsPanel toggles between current and historical rates, and allows
entire curves or just specific maturity terms to be compared over time.

29

Window

PortfolioForm

SalesmanForm

AccountForm

DeliveryForm

PaymentForm

ConfirmsForm

CusipForm

CalculatorForm

IssuerForm

OfferingForm

PositionForm
Your

PositionForm

Your CusipForm

Your

SalesmanForm

Your

AccountForm

RateHistoryWindow

RateWindow

NeXT Classes

Afs Classes

Your Classes (examples)

AfsWindow

AfsForm

TicketForm

CpRateForm

tradekit

AfsWindow / AfsForm

Class Hierarchy

30

PortfolioScanPanel

SalesmanScanPanel

AccountScanPanel

InstructionsScan

Panel

CusipScanPanel

IssuerScanPanel

PositionScanPanel

TicketScanPanel

NeXT Classes

Afs Classes

Your Classes (examples)

PeriodsPanel

SettingsPanel

AccountPositions

Panel

ProposedSellPanel

AfsScanPanel

Your

TicketFindPanel

AfsFindPanel

AccountFindPanel

InstructionsFind

Panel

CusipFindPanel

OfferingFindPanel

TicketFindPanel

Your

AccountFindPanel

Your

TicketScanPanel

IssuerPositions

Panel

Panel

AfsPanel

tradekit

Panel / AfsPanel

Class Hierarchy

